A cosmic death spiral may tell us about the age of the universe | 宇宙死亡漩涡现象或将揭晓宇宙的历史 - FT中文网
登录×
电子邮件/用户名
密码
记住我
请输入邮箱和密码进行绑定操作:
请输入手机号码,通过短信验证(目前仅支持中国大陆地区的手机号):
请您阅读我们的用户注册协议隐私权保护政策,点击下方按钮即视为您接受。
FT英语电台

A cosmic death spiral may tell us about the age of the universe
宇宙死亡漩涡现象或将揭晓宇宙的历史

Decoding the 2017 kilonova, when two neutron stars collided, could unlock other astrophysical mysteries
解码2017年两颗中子星相撞的千新星,可能解开其他天体物理学的谜团。
00:00

undefined

The writer is a science commentator

In 2017, scientists detected an extraordinary cosmic event around 140mn light years from Earth. Two neutron stars in a binary system, each with a mass comparable to that of the Sun but compressed into the size of a city, had been rotating around each other uneventfully for 11bn years in ever decreasing circles. Then, in an instant, the superdense duo entered a ferocious death spiral, spinning around each other 100 times a second, before colliding and exploding.

This so-called kilonova event created a black hole and a fresh mystery. A new analysis published in Nature this month shows that the resulting blast was perfectly spherical, rather than pancake-shaped as expected. The clash with prediction hints at the possibility of unexplained physics occurring inside extreme cosmic environments. The geometry of the blast may also offer a promising new method of measuring the age of the universe.

Kilonovas can be thought of as the visually dimmer but more violent cousins of supernovas. Both phenomena involve temporary stellar brightening. Broadly, a supernova happens either when a massive star runs out of fuel and collapses; or when it accumulates material from a neighbour, sparking a runaway nuclear reaction.

In contrast, a kilonova happens when a neutron star, itself the collapsed core of a massive star, collides with either another neutron star or with a black hole. The brief, explosive union becomes a transient heavy metal factory, pumping out elements such as gold, platinum and uranium, and energetically scattering them across the universe. The precious metals mined on Earth today came, scientists think, from meteorites raining down from space.

Studying kilonovas can help to illuminate how some of the heavier elements in the periodic table were created, according to Albert Sneppen, a researcher at the Cosmic Dawn Center at the University of Copenhagen, who led this particular study with his colleague Darach Watson. But, Sneppen adds, the unexpectedly symmetrical explosion additionally hints at as-yet-unknown physics in the heart of the collision, which he describes as featuring “the highest densities in the universe, temperatures of billions of degrees, and magnetic fields strong enough to distort the shapes of atoms”. One theory is that the core of the merger contains more energy than predicted, powerfully smoothing out irregularities as material is blown off.

While the ball-shaped blast is at odds with computer predictions of a flattened disk, says co-author Stuart Sim, an astrophysicist at Queen’s University Belfast, the surprising symmetry could lead to an unanticipated spin-off: a cleaner measurement of the Hubble constant. This number, one of the most important in cosmology, allows researchers to variously calculate how rapidly the universe is expanding, the age of the cosmos, and phenomena such as dark matter and dark energy. While the universe is generally thought to be around 13.8bn years old, different methods yield answers that vary by as much as a billion years.

Estimating the Hubble constant partly relies on measuring the distance of faraway astrophysical objects, such as supernovas. But, Sim explains, “measuring distances to astrophysical sources is difficult. For nearby stars you can do it, but for most things you can’t. If these kilonovas are as simple and symmetrical as this analysis suggests, then . . . that would allow you to infer their distances with relatively simple modelling.”

The dream scenario would be to find a clutch of other kilonovas, all with mathematically convenient symmetry, at a variety of distances. There are hopes that the gravitational wave detector LIGO, located across two sites in Louisiana and Washington, will point the way when it resumes operation next month, by detecting the giveaway ripples in space-time created by these monster mergers. That is how this 2017 kilonova, now called AT2017gfo (signifying ‘astronomical transient’, the year of detection, and a three-letter unique identifier), was first spied.

But, Sim cautions, “there’s no reason for other kilonovas to be the same. It could turn out that this 2017 event is a weird one.” There is a precedent: one early, well-studied supernova, 1987A, turned out to be unusual compared to those that followed.

It may take decades to decode the mysteries of kilonovas. Billions of stars, meanwhile, carry on their infinite business of living and dying and colliding, their matter continually remade and redistributed elsewhere in the universe — some of it, remarkably, into the slender platinum band on my ring finger.

版权声明:本文版权归FT中文网所有,未经允许任何单位或个人不得转载,复制或以任何其他方式使用本文全部或部分,侵权必究。

我们需要重新思考AI中的“A”代表什么

从不同的文化视角来看待这项技术,其威胁和前景会呈现出新的面貌。

马斯克与Maga之间的斗争揭示了特朗普圈子内对移民问题的分歧

当选总统在硅谷的新盟友因外籍工人问题遭到其核心支持者的强烈反对。

全球企业借款在2024年攀升至创纪录的8万亿美元

企业利用投资者的巨大需求,提前发行原定于明年发行的债券。

美国发现俄罗斯涉嫌阿塞拜疆飞机失事的“早期迹象”

阿塞拜疆和哈萨克斯坦在致命事件后暂停了飞往俄罗斯的航班。

科技股回落拖累华尔街股市走低

花旗集团警告称,股市强劲的一年即将结束,动荡迫在眉睫。

特朗普要求最高法院推迟TikTok禁令,以促成“政治解决”

立法将迫使中国公司字节跳动在1月19日前剥离其视频应用程序,否则将在美国受到限制。
设置字号×
最小
较小
默认
较大
最大
分享×